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This addendum concerns the statement after (3.19), which says that the
hierarchy of equations (3.11) has a unique solution [in (3.11) there should
be a minus sign in front of ¢4].

Such a statement is easily proven when one has an a priori bound on
the j-body correlation functions of the form ¢/, with some fixed ¢ which
does not depend on j. Our a priori bound, however, grows like %’ and the
proof of uniqueness becomes much more delicate: uniqueness might not
even be true, in general, in the class of correlation functions bounded only
by e¥". Our proof, as we are going to see, exploits in an essential way the
presence of the heat kernel, ¢ #0, in the same way used to prove the a
priori bound.

We write in integral form the hierarchy of equations (3.11) for the
correlation functions 47 and we get

W 0=V ot | d5 Vi Cpuihi(19) (1)

where f;, are the correlation functions at time 0, namely
J
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f(x, v, 0) being the initial datum for the Carleman equation, assumed to be

' This paper appeared in J. Stat. Phys. 55:625-638 (1989).
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a normalized, nonnegative function in C°({0, 1]%). The collision operator

C; ;.. is given by ,
Ciroi=2 % Cilu (3a)
i=1 b=+
Clj+1gj+1(x1’ Upseess X Uj)
= Fg 0 1(X1, U1 Xy TV, X, 05, X5, 1 0;) (3b)

Iterating (1) » times, we get
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We bound the first two terms on the right-hand side of (4) by

=t (j+m)! .
S U 5
where ¢ =max f(x, v, 0). As we shall see at the end of this addendum, we
can also prove a bound which is independent of the sup-norm of the initial
datum.

For ¢ small enough, precisely for 2zc < 1, (5) is bounded uniformly on
n. The problem is therefore to control the remainder in (4). Let us fix the
values 1222, $,,.. 8,, I]50ey Iy, and by,..., b,,. Call
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Assume first that the label j+n—1#i,; then, by integrating over the
(j+ n— 1)th particle and using (3.3b) [see (3.2) for notation] and (3.8), we
get

ASCG(SH_I_S )71/2| J+n—2,5,- 173,,C]ln+bnn 2J+n71hj+n71('ssn)| (7)
If, on the other hand, i, =j+#n—1, we can use the symmetry of 4 under

the exchange of j+#n—1 and i,_, due to the fact that the particles with
labels j+#n—1 and i, _, are in the same state at time s,
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We can now use the semigroup property and iterate the procedure. We
therefore have that the last integral in (4) is bounded, in absolute value, by

] ! ! Sn-1
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where [|h], | is the sup over space and over times s < (2¢)7Y, ¢ being as
in (5): we consider for the moment only times ¢ which are smaller than
(2¢) 7. The expression in (8) is equal to
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For 4c,t'?<1 this term vanishes when #n-»co. Hence, for
t<min{(4c,) "% (2¢)7'}, [cf. (5)] hi(-, t) is given by the limit as n — oo of
the first two terms in (4). This proves that in the same time interval

]
h;(‘,[)z‘mlf(-,l') (10)
where f solves {2.17). By (3.18) we can start again and reach times twice
as large as before. By iteration we then prove that (10) extends to all times.
A final remark: the same argument used to control the last integral

in (4) allows one to prove a bound for the first sum in (4) which is
independent of || f(-, 0)l| ...



